If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-11=53x
We move all terms to the left:
20x^2-11-(53x)=0
a = 20; b = -53; c = -11;
Δ = b2-4ac
Δ = -532-4·20·(-11)
Δ = 3689
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-53)-\sqrt{3689}}{2*20}=\frac{53-\sqrt{3689}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-53)+\sqrt{3689}}{2*20}=\frac{53+\sqrt{3689}}{40} $
| -6(x-2)=3(-4-2x) | | 371.28=210+0.72x | | x−5÷3=x÷2 | | x=12x^2-5x+23/3x+4 | | 2(x+7)=4(x+5)−18 | | x−5/3=x/2 | | -3=5(u-3)-8u | | 61+(2x+17)=90 | | 5/9(f-32)=-63.1 | | 32+4y=16 | | (2x-9)+(X+16)+(7x-17)=180 | | b+-2b+3b=2 | | 2.25(37.11-0.77x)+1.75x=40 | | 12x+13–6x=21 | | 6v-36=3v-45 | | 10000=3400(1.03)^t | | 0.3(t+10)-5=-5 | | (3x+17)+(6x-19)+(X-8)=180 | | 69+10x=90 | | -2.9(v-5)=-8.7 | | 0.2x-28+0.2x-44=90 | | S=180-10x | | 6-4(a+1)=2(4a-3)= | | N•2+15=n•5 | | x+(x/2)+(x/3)=66 | | (6x+4x+3x)+(-11-1-3)=180 | | 5q-4q+5=18 | | 39x=90 | | 65+(4x-3)=90 | | 19=z-(-2) | | 32x+10=100 | | (3x+2)+(6x-8)+(X+16)=180 |